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STOKES FLOW IN AN ELASTIC TUBE—A
LARGE-DISPLACEMENT FLUID-STRUCTURE

INTERACTION PROBLEM
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SUMMARY

Viscous flow in elastic (collapsible) tubes is a large-displacement fluid-structure interaction problem
frequently encountered in biomechanics. This paper presents a robust and rapidly converging procedure
for the solution of the steady three-dimensional Stokes equations, coupled to the geometrically non-linear
shell equations which describe the large deformations of the tube wall. The fluid and solid equations are
coupled in a segregated method whose slow convergence is accelerated by an extrapolation procedure
based on the scheme’s asymptotic convergence behaviour. A displacement control technique is developed
to handle the system’s snap-through behaviour. Finally, results for the tube’s post-buckling deformation
and for the flow in the strongly collapsed tube are shown. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The efficient solution of large-displacement fluid-structure interaction problems is still a
challenging problem in computational mechanics, especially if the system under consideration
is three-dimensional. Numerous applications exist in offshore engineering [1], aeroelasticity [2]
and bio-fluid mechanics. The problem considered in this paper is that of steady viscous flow
in an elastic vessel—a model problem applicable to a wide variety of flows in the human body
in which many fluid conveying vessels are elastic and deform substantially in response to the
traction exerted on them by the flow.

Previous computational studies investigated the effect of wall elasticity on the flow in the
arteries and in arterial bifurcations [3–6]. Such computational analyses are facilitated by the
fact that the transmural pressure (internal minus external pressure) in these vessels is usually
positive. Hence, the arteries tend to be inflated and they maintain their original nearly
axisymmetric shape throughout the deformation. The magnitude of the deformations tends to
be moderate since the vessels have a high extensional stiffness.

There are, however, numerous examples of fluid conveying vessels in the human body which
are subject to a negative (compressive) transmural pressure (e.g. the veins above the level of the
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heart, the veins and arteries during sphygmomanometry, the airways during forced expiration).
When the compressive transmural pressure on these vessels exceeds a certain critical value, the
vessels buckle non-axisymmetrically. Since the vessels’ structural stiffness is greatly reduced
after the buckling, the changes in the tube geometry are typically quite large. Therefore, the
interaction between fluid and solid mechanics tends to be very strong. Simple one-dimensional
models, which were developed to analyse the problem, fail to describe many of the important
features, especially the system’s snap-through behaviour under a variety of parameter
variations.

The problem has been studied experimentally by many authors (for a more detailed review
of experiments and of previous one-dimensional models see Reference [7]) and the typical
experimental set-up, shown in Figure 1, forms the basis for most theoretical analyses: inside a
pressure chamber, a thin elastic tube (typically made of rubber) of length L, undeformed radius
R0 and wall thickness h is mounted on two rigid tubes. The chamber pressure, pext, can be
prescribed independently of the fluid pressure. Viscous fluid is pumped through the tube at a
steady flow rate (volume flux V: ). In the experiments, the non-axisymmetric collapse of the
tube is often followed by large amplitude self-excited oscillations.

In order to develop a rational model of the problem, while avoiding the complexities and
computational requirements of a fully three-dimensional computation, several authors [8–13]
recently examined the two-dimensional equivalent of the collapsible tube problem: the zero (or
finite) Reynolds number steady (or unsteady) flow in a two-dimensional channel in which part
of one wall is replaced by an elastic membrane. These studies provided a detailed picture of the
fluid and solid mechanics involved in the large amplitude self-excited oscillations in this
simplified system.

Figure 1. Sketch of the typical experimental set up.
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In another series of studies [14–17], the steady deformations of the fully coupled three-di-
mensional system were investigated: the tube wall was modelled as a circular cylindrical shell
and geometrically non-linear shell theory was used to model its large non-axisymmetric
post-buckling deformation. The fluid flow was modelled using lubrication theory (assuming
low Reynolds numbers and a small wall-slope in the direction of the flow). The coupled
fluid–solid problem was solved using a parallelised Newton–Raphson technique based on a
finite element discretisation of the fluid and solid equations. The results revealed many features
which are unique to the three-dimensional geometry (snap-through buckling of the tube wall,
flow division into the two lobes that remain open during the buckling, buckling with higher
circumferential wavenumbers for increased upstream pressure, etc.). This model provides a
very accurate description of the tube’s deformation, but some of the assumptions used in the
simplification of the fluid equations were violated (after the buckling, the wall-slope at the
downstream end tends to be quite large).

In order to develop the first entirely self-consistent model of the flow of viscous fluid in a
collapsible tube, the small slope assumption was abandoned and lubrication theory was
replaced by a solution of the Stokes equations that describe the flow in arbitrary geometries at
zero Reynolds number. This paper describes the computational technique developed to solve
this fully coupled large-displacement fluid-structure interaction problem.

2. COMPUTATIONAL TECHNIQUE

Before giving details of the computational technique used in this study, the overall strategy will
be outlined and possible alternative solution techniques discussed. The fluid and solid
equations will be discretised using finite element methods (FEM). The large wall-displacements
require the use of Lagrangian co-ordinates for the solid mechanics. In this formulation, the
computational domain for the solid equations remains fixed. The fluid equations are based on
an Eulerian description, hence the fluid mesh has to be adjusted by means of an automatic
mesh generator as the tube wall deforms. The solution of the fluid equations determines the
fluid pressure and velocity fields from which the fluid traction on the tube wall is obtained.
The combination of the fluid traction with the external pressure determines the load terms in
the solid equations. Given these load terms, the solid equations can be solved to find the wall’s
corresponding equilibrium position.

Ideally, the fluid and solid equations would be solved simultaneously, using a global
Newton–Raphson technique (as in References [9,12,18]) or in a modified form (References
[15,16]). However, the memory requirements for the storage of the global Jacobian matrix are
prohibitive—even for ‘pure’ fluid computations [19]. Preconditioned conjugate gradient solvers
incorporated into the Uzawa scheme provide an efficient procedure to solve the Stokes
equations without storing the system matrix. However, the convergence of most iterative
solvers relies heavily on the properties of the system matrix. Unfortunately, the coupled system
matrix for the fluid and solid equations is neither symmetric nor positive definite. More
general iterative solvers like GMRES tend to perform poorly unless a good preconditioner can
be found—this is not an easy task for the complicated coupled system matrix. Hence, the
simultaneous solution of the fluid and solid equations does not look promising.

The scheme used in the present computations is the segregated solution procedure used
previously by other authors [10,11,13]: start with an initial guess for the wall deformation;
solve the fluid equations in the corresponding fluid domain; compute the fluid traction; use the
fluid traction as the load term in the solid equations; compute the corresponding equilibrium
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wall deformation; update the fluid domain and iterate until convergence. In this scheme, the
fluid and solid equations are only loosely coupled, which makes it easy to use the most
appropriate solution techniques for each individual subproblem (the Uzawa scheme for the
fluid equations, direct Newton–Raphson solver for the solid equations). However, the
convergence of this iterative scheme tends to be very slow and, even more worrying,
convergence cannot be guaranteed a priori, even if a good initial guess can be provided.
Furthermore, the strong non-linear behaviour of the coupled fluid–solid system gives rise to
additional computational difficulties such as the convergence problems caused by the snap-
through behaviour frequently displayed by shell structures.

The development of a fast and robust solver for this problem will be presented in the
following sections. Section 2.1 gives a brief summary of the shell theory used to model the wall
deformation and describes the finite element technique used to discretise the shell equations.
Section 2.2 describes the finite element solution of the Stokes equations and Section 2.3 gives
details of the coupling between the fluid and solid domains. In Section 2.4, the scheme’s
convergence characteristics are analysed and an acceleration technique is developed. Results of
the computations are presented in Section 3 and the concluding section discusses possible
future extensions of the coupled solver.

2.1. Shell equations

The flexible tube of length L, undeformed radius R0 and wall thickness h is modelled as a
cylindrical shell and its deformation is described using the geometrically non-linear Kirchhoff–
Love-type shell theory used in Reference [16]. The deformation of the shell is expressed in
terms of the dimensionless midplane displacements v=v*/R0. The asterisk distinguishes
dimensional quantities from their non-dimensional equivalents. We use Lagrangian co-ordi-
nates za/z*a/R0 (Greek and Latin indices have values 1, 2 and 1, 2, 3, respectively, and the
summation convention is used) to parameterise the shell’s midplane such that the non-dimen-
sional vector to the undeformed midplane, r0=r*0/R0 is given by

r0= (sin(z2), cos(z2), z1)T, z1� [0, L/R0], z2� [0, 2p ]. (1)

Then the position of a material point at a non-dimensional distance z3=z*3/R0 from the
shell’s undeformed midplane is given by

r=r0+z3n, z3� [−h/(2R0), h/(2R0)], (2)

where n= (sin(z2), cos(z2), 0)T is the vector normal to the undeformed midplane (see Figure 2).
After the deformation, the material point on the midplane with the Lagrangian co-ordinates

za has been displaced to a new position R0(za)=r0(za)+v(za). The displacement vector v was
decomposed into the undeformed basis, v=6 jaj, where the undeformed base vectors are given
by aa=r,a

0 and a3=n. The comma denotes the partial derivative with respect to the Lagrangian
co-ordinates. Lowercase and uppercase letters are used for shell variables associated with the
undeformed and deformed geometry, respectively.

The Kirchhoff–Love assumption states that material lines that were normal to the unde-
formed midplane remain normal to the shell’s midplane throughout its deformation and that
they remain unstretched. Therefore, the vector to an arbitrary material point in the shell after
the deformation is given by

R=R0+z3N, (3)

where N is the vector normal to the deformed shell.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 243–265 (1998)



STOKES FLOW IN AN ELASTIC TUBE 247

Figure 2. Sketch of the co-ordinate system used in the analysis.

In spite of the large deformations, the strain is typically fairly small, which allows Hooke’s
law to be used as the constitutive equation. Then the principle of virtual displacements which
governs the shell’s deformation is given by& 2p

0

& L/R0

0

�
Eabgd

�
gabdggd+

1
12

� h
R0

�2

kabdkgd

�
−
�R0

h
�

(f ·dR)�
z 3=9h/(2R 0)

n
dz1 dz2=0,

(4)

where f= f*/E is the traction per unit area of the undeformed midplane, non-dimensionalised
with Young’s modulus E. gab and kab are the non-dimensional strain and bending tensors
(given in Appendix A) and the dimensionless plane stress stiffness tensor, Eabgd=E*abgd is
given by

Eabgd=
1

2(1+n)
�

dagdbd+daddbg+
2n

1−n
dabdgd

�
, (5)

where n is Poisson’s ratio.
The variations of strain and bending tensor have to be taken with respect to the displace-

ments 6 i and their derivatives. The tube is clamped at both ends. Therefore, at z1=0 and
z1=L/R0, the displacements have to be prescribed and d63/dz1=0. A more detailed discus-
sion of the large-displacement shell theory can be found in Reference [20].

Since a variational equation exists for the solid mechanics, a displacement based a finite
element technique is chosen to discretise the equations. Carrying out the variations in (4) is a
straightforward process but involves some lengthy algebra. The computer algebra package
MAPLE was used to express (4) in terms of the displacements and their derivatives, giving& 2p

0

& L/R0

0

(fid6
i+fiad6 ,a

i +fiabd6 ,ab
i ) dz1 dz2=0. (6)

The f terms contain up to second-derivatives of the displacements, therefore, shape functions
are needed with continuous first-derivatives across the element boundaries. Quadrilateral
isoparametric Hermite elements with nodal displacements and slopes as independent degrees of
freedom [21] were chosen. Within element number E (E=1, Ns, where Ns is the total number
of shell elements) the displacements 6 i were interpolated as
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6 i= %
4

j,k=1

ViJ(j,E)kcjk(s1, s2) sa� [0, 1]. (7)

The shape functions were chosen to be tensor products of the one-dimensional Hermite
polynomials h1(s)=2s3−3s2+ 1, h2(s)=s3−2s2+s, h3(s)= − (2s3−3s2) and h4(s)=s3−
s2. The first index of the shape function cjk denotes the local node number ( j=1, 4). The
shape function’s second index (k=1, 4) stands for the type of the degree of freedom
(interpolating the displacement, the two first derivatives or the mixed second-derivative with
respect to the local co-ordinates); J( j, E) represents the global node number of local node j in
element E.

To generate isoparametric elements, the same shape functions were used to map the local
co-ordinates (s1, s2) to the global co-ordinates (z1, z2),

za= %
4

j,k=1

ZaJ(j,E)kcjk(s1, s2). (8)

Details of the choice of the coefficients ZaJ( j,E)k are given in Reference [16].
The tube’s buckled configuration is symmetric, and for the relatively long tubes considered

here, the most unstable buckling mode has two circumferential waves [14], as sketched in
Figure 1. Therefore, only one quarter of the tube needs to be discretised.

We insert Equations (7) and (8) into Equation (6) and obtain

%
Ns

E=1

%
4

j,k=1

!& 1

0

& 1

0

(ficjk+fiacjk,a+fiabcjk,ab)J ds1 ds2
"

dViJ(j,E)k=0, (9)

where J is the determinant of the Jacobian of the mapping between the local co-ordinates
(s1, s2) and the global co-ordinates (z1, z2). The variations of those Vijk which are not
determined by the boundary conditions are arbitrary. This leads to the following set of
non-linear algebraic equations fijk for the unknown Vijk

fijk= %
Ns

E=1

& 1

0

& 1

0

{(ficlk+fiaclk,a+fiabclk,ab)�J(l,E)= jJ} ds1 ds2=0. (10)

These equations still contain the load terms, which have to be determined from the solution of
the fluid equations. The double integral over the elements was evaluated using a 3×3
Gaussian integration. Therefore, the load terms need only to be determined at the Gauss
points within each element. The above set of equations was solved using a Newton–Raphson
method. Since the exact expressions for strain and bending tensor have to be used [16], the
integrand in Equation (10) contains very complex algebraic expressions. Therefore, it is
computationally more efficient to determine the Jacobian matrix by finite differencing than to
use the analytical expressions for its coefficients. The linear systems were solved using
LU-decomposition since the presence of follower loads and the displacement control technique
(described below) make the system matrix non-symmetric.

2.2. Fluid equations

For sufficiently low Reynolds number, the Navier–Stokes equations, which govern the fluid
flow, can be approximated by the linear Stokes equations given in the dimensionless form by

(p
(xi

= m̄
(2ui

(xj
2 (11)

and the continuity equation
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(ui

(xi

=0, (12)

where

m̄=
mU
R0E

(13)

and m is the dynamic viscosity of the fluid. In Equations (11) and (12) the velocities were
non-dimensionalised with the average velocity through the tube, ui=ui*/U, where U=V: /
(pR0

2), and Young’s modulus was used to non-dimensionalise the pressure, p=p*/E. The
Cartesian co-ordinates xi* were non-dimensionalised with the undeformed tube radius, xi=xi*/
R0.

The fluid traction acting on the tube wall is given by

fi=pNi− m̄
�(ui

(xj

+
(uj

(xi

�
Nj, (14)

where the Ni are the Cartesian components of the normal vector, N, on the tube wall.
We transform the Stokes equation into their weak form by multiplying the momentum and

continuity equations by test functions CF and CC, respectively, and integrating them by parts.
This yields& �

−p
(CF

(xi

+ m̄
(ui

(xj

(CF

(xj

�
dV=

7 �
−pni+ m̄

(ui

(n
�
CF dA, (15)

and & �
−CC (uj

(xj

�
dV=0, (16)

where the volume and area integrals have to be taken over the fluid domain V and its
boundary A, respectively.

The weak equations are discretised with Nf isoparametric Taylor–Hood-type brick-shaped
finite elements. The velocities and pressures within fluid element E (E=1, Nf) are thus
interpolated as

ui= %
27

j=1

UiJf (j,E)
c j

F(s1, s2, s3), (17)

and

p= %
8

j=1

PJp (j,E)
c j

P(s1, s2, s3), (18)

respectively. The isoparametric mapping between local and global co-ordinates uses the
velocity shape functions, i.e.

xi= %
27

j=1

XiJf (j,E)
c j

F(s1, s2, s3), (19)

where the Xij are the xi co-ordinates of the global node j.
The three-dimensional velocity and pressure shape functions are tensor products of the

one-dimensional quadratic and linear Lagrangian interpolants Lu1(s)=s(s−1)/2, Lu2(s)=
(s+1)(s−1)/2, Lu3(s)=s(s+1)/2 and Lp1(s)= − (s−1)/2, Lp2(s)= (s+1)/2, respectively,
where s� [−1, 1]. Jf( j, E) and Jp( j, E) are the global velocity and pressure node numbers of
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the local node j in fluid element E. Choosing the test functions CF and CC in the momentum
and continuity equations to be the velocity and pressure shape functions, respectively,
transforms the volume integrals in Equations (15) and (16) into the following set of linear
equations

f ik
F = %

Nf

E=1

& 1

−1

& 1

−1

& 1

−1

�
− %

8

jp=1

c jp
P (c l

F

(xi

PJp (jp ,E)+ m̄ %
27

jf=1

(c jf
F

(xn

(c l
F

(xn

UiJf (jf ,E)n )
Jf(l,E)=k

×JF ds1 ds2 ds3=0, (20)

where i=1, 3; k=1, Mf and

f ik
P = %

Nf

E=1
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−1

& 1

−1
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(c jf
F
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c l
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Jp(l,E)=kJF ds1 ds2 ds3=0 (21)

where k=1, Mp. Mf and Mp are the total number of velocity and pressure nodes and JF is the
determinant of the Jacobian of the isoparametric mapping Equation (19). The minus sign in
the discretised continuity equation was introduced to make the system symmetric. The
integrals were evaluated numerically with a 3×3 Gauss rule.

The tube’s deformation is symmetric, therefore, only one quarter of the fluid domain is
discretised and the following boundary conditions are applied: (i) at the tube’s upstream end
a fully developed parabolic velocity profile is prescribed, ua=0, u3=2[1− (x1

2+x2
2)/(1−

h/2R0)2]; (ii) at the tube’s downstream end normal outflow is imposed, ua=0 and −p+ m̄

(u3/(x3=0, which sets the pressure to zero; (iii) at the symmetry boundaries the normal
velocities and the tangential shear stresses are set to zero (e.g. at x1=0: u1=0, (u2/(x1=
(u3/(x1=0); (iv) on the rigid walls the no-slip condition ui=0 is applied. With these boundary
conditions, the surface integral in Equation (15) vanishes everywhere and after applying the
Dirichlet velocity boundary conditions, the linear Equations (20) and (21) fully determine the
unknown velocity and pressure variables. Symbolically, Equations (20) and (21) can be written
as

Ã
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Æ
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, (22)

where the Ai are the symmetric positive definite matrices resulting from the finite element
discretisation of the Laplace operator in the ith momentum equation and the Di

T and Di are
the discretised gradient and divergence operators, respectively. The vectors ui and p contain the
unknown velocity and pressure values and the right-hand side vector contains the contribu-
tions due to the Dirichlet boundary conditions.

The equations were solved using the classical Uzawa scheme [22], operating on the equation

%
3

i=1

Di Ai
−1Di

Tp= − fp− %
3

i=1

Di Ai
−1fi, (23)

which is obtained by block elimination from Equation (22). A preconditioned conjugate
gradient solver is used to solve Equation (23) for the pressure unknowns (see Appendix B for
details). Once the pressure is determined, the velocities are obtained from the systems

A(i)u(i)= fi+Di
Tp (no summation on i), (24)
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which were also solved with a preconditioned conjugate gradient method (the diagonal of Ai

was used as the preconditioner).

2.3. Fluid–solid coupling

The fluid and solid solvers interact through the traction exerted by the fluid on the tube
wall. Also, the fluid mesh generator has to adjust the fluid mesh in response to the wall
deformation. This is achieved as follows: a structured fluid mesh is generated in the unde-
formed cylindrical tube. In this reference configuration, the fluid nodes on the tube wall
coincide with certain material points in the shell. When the tube wall deforms, the fluid mesh
is regenerated by keeping the fluid mesh ‘attached’ to the same material points. Hence, the wall
displacement directly determines the position of the fluid nodes on the tube wall. The
construction of the mesh in the interior is illustrated in Figure 3. The nodal points in the fluid
mesh are arranged in axial layers. In each layer a central box whose dimensions are based on
the local height and width of the tube is constructed. During the buckling, the tube wall warps
slightly. The warping displaces material points on the wall which had the same x3 co-ordinate
in the reference configuration to different axial positions. The central box is located at the
average axial position of the corresponding nodal points on the tube wall. The edges of the
elements in the region surrounding the central box are formed by straight lines to the tube
wall.

As the tube collapses, the axial spacing of the fluid elements is occasionally updated to refine
the fluid mesh in the region of strongest collapse. This refinement is based on the requirement
that the depth of the elements (in the axial direction) in each layer be approximately equal to
their average height (measured in the plane of strongest collapse).

Figure 3. Fluid and solid meshes used for the finite element discretisation of the Stokes and shell equations. Only one
quarter of the tube is discretised.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 243–265 (1998)
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Figure 4. Sketch illustrating the transfer of the fluid traction from the discretised fluid domain to the FEM integration
point in the solid domain. The solid squares and circles represent the corner nodes of the shell and fluid elements,

respectively, and for simplicity the transfer is only illustrated for a two-dimensional geometry.

Once the fluid equations are solved on this mesh, the fluid traction on the tube wall needs
to be determined at the solid Gauss points. Let the vector to the solid Gauss point iS (iS=1, 9)
in the solid element ES be denoted by R0 (i S,ES). Since different element types and isoparametric
mappings were used for the fluid and solid domains, points on the boundary of the fluid
domain do not necessarily coincide exactly with points on the tube wall (unless they are nodal
points in the fluid mesh). This is illustrated in Figure 4. The fluid traction for a given solid
Gauss point (point A in Figure 4) was therefore determined at the intersection of the boundary
of the discretised fluid domain with the normal vector on the tube wall at the Gauss point,
N0 (i S,ES). This point (point B in Figure 4), whose position vector is denoted by R0 (F), is located
on one of the faces of the fluid elements. Therefore, one of the local fluid co-ordinates of this
point is known (s3

(F)=1 in Figure 4). The other two local co-ordinates, sa
(F) (together with the

fluid element number, E(F)) and the distance j between the Gauss point and the fluid mesh are
then determined from the equation

R0 (i S,ES)+jN0 (i S,ES)=R0 (F)(E(F), s1
(F), s2

(F), s3
(F)=1), (25)

which is solved using a Newton–Raphson method. The gap between the tube wall and the
discretised fluid domain is g=jN0 (i S,ES). Since the fluid and solid domains are very tightly
coupled, the fluid co-ordinates corresponding to each solid Gauss point change very little
during the tube’s deformation and the Newton–Raphson iteration usually converges within
one step.

An estimate of the errors introduced by the approximate transfer of the traction is readily
obtained from a Taylor expansion. For instance, the error for the pressure is approximately

dp:
)(p
(xi

gi

)
, (26)
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where the gi are the Cartesian components of the gap vector g. The error estimates can
readily be evaluated during the traction transfer. In all computations, the discretisation of
the fluid and solid domains was sufficiently fine to ensure that max �dp/(pentry−pexit)�B
5.0×10−4.

2.4. The coupled solution

As mentioned in the introduction, the basic iterative scheme (switching between fluid and
solid solver) tends to be very slowly convergent and the computational cost can easily
become prohibitive since each iteration requires the solution of a full three-dimensional
Stokes problem. Furthermore, in its simplest (and easiest to implement) form the scheme
does not provide any means of handling the snap-through behaviour frequently displayed
by shell structures.

Two modifications to the iteration scheme will now be presented that increase its conver-
gence rate dramatically and also make the overall scheme much more robust. For this
purpose, a slightly more abstract notation for the problem is introduced. Let Vi (i=1,
NShell) and Uj ( j=1, NFluid) denote the discretised fluid and solid variables, respectively,
where NShell and NFluid are the number of degrees of freedom in the respective domains. We
write the discretised shell equations, Si, which depend on the displacement variables and,
through the load terms f, on the fluid variables, as

Si(Vi, f(Uj))=Si(Vi, Uj)=0, i=1, NShell, j=1, NFluid. (27)

Similarly, the discretised fluid equations, Fj, depend not only on the fluid variables but
also on the displacement variables which determine the tube geometry, and hence the nodal
positions in the fluid mesh, i.e.

Fj(Vi, Uj)=0, i=1, NShell j=1, NFluid. (28)

2.4.1. The continuation technique. The strong non-linearity of the shell equations re-
quires the use of a continuation technique to compute the displacement fields correspond-
ing to a strongly collapsed tube. For simplicity, the continuation technique for the simpler
case of zero flow and vanishing external pressure will be discussed first. In this case,
the load terms are given by the hydrostatic pressure on the tube wall, i.e. f=pN, where
N is the normal vector on the tube wall. The displacement field corresponding to a large
negative (compressive) pressure can be readily computed through a sequence of interme-
diate displacement fields corresponding to slowly increasing compressive loads. The se-
quence is started with a slightly buckled tube and the equilibrium displacement field for
each load level is used as the initial guess for the Newton–Raphson iteration at the next
level.

This basic continuation technique usually fails if the shell displays a snap-through (a
sudden large change in the displacement field for a critical value of the load p). One way
to overcome this problem is to choose a finite element node in the collapsing part of the
tube and to prescribe its radial displacement, VI, in an additional equation, i.e.

SN Shell+1=VI−V0 =0. (29)

If the control node is chosen such that its radial displacement increases monotonically
during the tube’s collapse, the continuation procedure can be based on a stepwise increase
of the prescribed displacement value, V0 , and the pressure, p, can be regarded as an addi-
tional unknown [23]. The Jacobian matrix of this augmented system has the form
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(i, j=1, NShell). (30)

The only non-zero entry in the last row of this matrix is in the Ith column, corresponding to
the degree of freedom prescribed by Equation (29). The additional column contains the
derivatives of the discretised shell equations with respect to the pressure. Since the shell
equations are linear in the pressure (see Equation (4)), these are easily evaluated.

In the case of non-zero flow, the fluid traction varies through the tube and it is not possible
to regard the fluid pressure as a load parameter. We can, however, make use of the fact that
the incompressible Stokes equations only determine the pressure up to an arbitrary constant.
This allows us to add a spatially constant pressure, pd, to the pressure field obtained from the
solution of the Stokes equations when we determine the fluid traction on the tube wall, i.e.

f= fStokes+pdN. (31)

The scalar pd can be used as the load parameter in the displacement control technique
described above. This approach corresponds to an experimental procedure in which the
external pressure, pext is adjusted to control the tube’s collapse while keeping the volume flux
and the downstream fluid pressure constant.

Other experimental procedures (e.g. controlling the tube’s collapse by varying the volume
flux while keeping the external pressure constant) cannot be simulated directly because the
derivative of the discretised shell equations with respect to the volume flux (required in the last
column of the augmented Jacobian matrix) cannot be evaluated in a segregated approach. The
data corresponding to such parameter variations has to be generated by interpolation.

It should be noted that the continuation technique does not ensure that the solution switches
from the axisymmetric prebuckling solution onto the postbuckled solution branch when the
critical value of the control pressure is exceeded. A more sophisticated continuation technique,
such as Keller’s arclength method [24], would be required for this purpose. However, such
branch selecting methods have to evaluate the global Jacobian matrix at the bifurcation point.
This is clearly not possible in a segregated approach which was specifically designed to operate
without this matrix. To force the tube onto the buckled path, a small non-axisymmetric
disturbance, pcos cos(2z2) with pcos�1, was therefore superimposed onto the pressure field.
This disturbance made the tube buckle in the required mode shape and the value of the control
displacement could be increased in small steps until opposite-wall-contact was detected for the
first time. The last displacement field before the occurrence of opposite-wall-contact was then
used as an initial guess for the second part of the run in which the disturbance pressure was
set to zero and the control displacement was reduced until the tube was reopened to its
axisymmetric shape. Since the first part of the run merely serves to provide an initial guess for
the wall shape of the strongly collapsed tube, the solver based on the lubrication theory
approximation of the Stokes equations [16], which is computationally much cheaper, was used
as the fluid solver for this part of the computation.

2.4.2. The iteration procedure. Now the convergence characteristics of the iteration procedure
will be analysed. Using the abstract notation introduced above, the procedure is given by:

1. Provide an initial guess for the displacement field: n=0, Vi
(0).

2. Solve Fj(Vi
(n), Uj

(n+ l))=0 for Uj
(n+1), or symbolically Uj

(n+ l)=Fj
−1(Vi

(n)).
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3. Solve Si (Vi
(n+ l), Uj

(n+ l))=0 for Vi
(n+ l) or symbolically Vi

(n+ l)=Si
−1(Uj

(n+1)).
4. Check for convergence, i.e.

dVmax
(n) = max

i=1,N Shell
�Vi

(n+1)−Vi
(n)�Betol

5. Set n�n+1 and go to 2.

The tolerance level for convergence, etol was coupled to the value of the prescribed displace-
ment value by setting

etol=10−3×V0 . (32)

Figure 5 shows the convergence history of an iteration based on this scheme: the radial
displacements of the FEM nodes along the line of strongest collapse (z2=p/2) are plotted
against the number of iterations. The dashed line shows the displacement of the control node
whose displacement was changed from V0 = −0.8 to V0 = −0.7. The displacement control
technique ensures that its value is kept constant at the prescribed value. All other nodes
oscillate around their final equilibrium position and 56 iterations are required to achieve a fully
converged solution.

In order to analyse this convergence behaviour in a more compact form, the intermediate
fluid solve is eliminated and thereby the iteration is condensed into an iterative procedure
involving only the solid variables, i.e.

Vi
(n+1)=Si

−1(Fj
−1(Vi

(n))). (33)

This equation shows that the procedure has the character of a Picard fix-point iteration. Using
the Taylor expansion of Equation (33) we obtain

Figure 5. Displacement history of the nodal points on the material line z2=p/2 during the Picard iteration. The
dashed line shows the displacement of the control node (at z1=7.4). The control displacement is reduced from

V0 = −0.8 to V0 = −0.7. L/R0=10, m̄=3.125×10−7.
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Figure 6. Displacement of the material lines z2=0 (bulging out) and z2=p/2 (collapsing) during the Picard iteration.
The dashed line shows the initial guess, the solid line is the final equilibrium shape and the dotted lines represent the
intermediate tube shapes during the iteration. Note how the tube pivots around the control node at z1=7.4 and

z2=p/2. The control displacement is reduced from V0 = −0.8 to V0 = −0.7. L/R0=10, m̄=3.125×10−7.

dVi
(n+1)=aijdVj

(n)+O((dVi
(n))2), (34)

where

aij=
(Si

−1

(Uk

(Fk
−1

(Vj

, i, j=1, NShell; k=1, NFluid, (35)

and dVi
(n)=Vi

(n+1)−Vi
(n). The scheme converges only if the spectral radius of aij is less than

one. It is impractical to check the scheme’s convergence in this way, as the coefficients aij are
very expensive to compute. They also have to be evaluated ‘near’ the converged solution,
which is not known a priori. However, the asymptotic Equation (34) can be exploited to
accelerate the procedure if it converges.

From (34) it is evident that the increment in each displacement variable is affected by the
increments in all other displacement variables during the previous iteration. A more detailed
examination of the successive displacement fields during the iteration reveals that this is an
overly pessimistic estimate. Figure 6 shows the deformation of the two symmetry lines on the
tube wall (at z2=0 and z2=p/2) as the iteration proceeds. The dashed lines are the initial
guesses, the solid lines are the converged solutions and the dotted lines represent the
intermediate wall shapes. Figure 6 shows that the displacement control technique has a very
positive side effect: since a nodal point in the interior of the shell has been pinned at a fixed
position, the shell is forced to pivot around this point. As the iteration proceeds, the successive
tube shapes approach the equilibrium position in a damped oscillation with approximately
constant mode shapes (see Figure 6) and geometrically decreasing amplitudes (see Figure 5). If
the displacement control technique is disabled, the tube usually either reopens until it reaches
an axisymmetric shape or it collapses so strongly that the opposite walls come into contact.
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The latter situation forces the computation to be terminated since the wall contact problem has
not yet been incorporated.

The observed geometrical convergence behaviour is consistent with the behaviour predicted
by Equation (34) and indicates that the matrix of the coefficients aij is dominated by its
diagonal elements, which are negative. Therefore, the off-diagonal elements in (34) are
neglected and thereby the displacement variables are assumed to geometrically approach their
asymptotic values Vi

(�) i.e.

Vi
(n)=Vi

(�)+A(i)a (ii)
n as n��; no summation on i. (36)

In the asymptotic regime, the coefficients Vi
(�), Ai and a(ii ) can be determined from the

displacement values in three successive iterations. In particular, the asymptotic value for the
displacement is given by

Vi
(�)=Vi

(n+2)−
(Vi

(n+2)−Vi
(n+1))2

Vi
(n+2)−2Vi

(n+1)+Vi
(n). (37)

This equation is only valid in the asymptotic regime but numerical experiments showed that it
is beneficial to apply the extrapolation as soon as possible, i.e. after every third iteration, since
even the initial stages of the iteration tend to be well described by Equation (36).

A further acceleration of the scheme in terms of computer time was achieved by exploiting
the observation that the lubrication theory approximation of the Stokes equations [16]
provides a good estimate of the pressure distribution in the flow. Therefore, the lubrication
theory solver was used as the fluid solver in the first stage of the iteration. Once this iteration
converged (in very little CPU time since the lubrication theory solution is less computationally
expensive than the full 3D Stokes solution), its equilibrium wall shape was used as the initial
guess for the final iteration in which the Stokes solver was used. The overall procedure is
summarised in the flowchart shown in Figure 7.

Figure 8 shows the convergence history for the same case as in Figure 5, using the
accelerated iteration procedure. The first stage of the iteration (based on the lubrication theory
approximation for the fluid equations) converges in nine steps, applying the extrapolation
procedure (37) twice. Then, another five iterations with the Stokes solver suffice to produce the
final converged solution.

It should be noted that the extrapolation procedure not only accelerates convergent
iterations, but often makes otherwise divergent iterations converge. An example of this is
shown in Figure 9, where the basic iteration procedure leads to a situation in which the tube
wall flip-flops between two extreme shapes. This phenomenon has been reported in previous
investigations [10,11], in which it prevented the scheme’s convergence in certain regions of
parameter space. The non-convergent oscillatory behaviour corresponds to the case aij= −dij.
Only two applications of the extrapolation procedure are required to achieve convergence with
the lubrication theory solver (see Figure 10).

2.5. Validation and performance

The shell solver was only slightly modified from the previous version which is documented
in more detail in Reference [16]. The newly developed Stokes solver was tested by computing
the flow through the undeformed tube (Hagen–Poiseuille flow). Furthermore, the numerical
results for the flow through a slightly buckled tube were compared with the analytical results
from a first-order perturbation analysis. Excellent agreement between the analytical and
numerical solutions was found [25]. Finally, the code was used to compute the flow through

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 243–265 (1998)



M. HEIL258

a moderately buckled tube and the predictions for the axial velocity component and the
pressure distribution were compared with the predictions from the lubrication theory solver
[16]. Good agreement was found, even for flows in tubes that were too strongly collapsed to
properly justify the use of lubrication theory [25]. The overall conservation of mass was
monitored by computing the volume flux through the upstream and downstream ends of the
rigid tubes. Even for strongly collapsed tubes, the inflow and outflow rates differed by less
than 0.1% from their theoretical value. Other tests included doubling the lengths of the rigid
upstream and downstream tubes (Rup=Rdown=Lup=R0 and Ldown=2R0 were used in the
computations) to verify that the upstream and downstream boundary conditions did not affect
the flow. The typical fluid and solid meshes are shown in Figure 3. Typical discretisations
involved 60 shell elements and approximately 1200 fluid elements, resulting in a total of
approximately 500 and 30000 degrees of freedom, respectively. For one test case, this
resolution was increased to ensure mesh independence of the solutions (a further refinement of
the fluid mesh to approximately 89000 degrees of freedom changed the fluid pressure
distribution by less than 6.6×10−3%). The code was originally developed on a DEC Alpha
workstation and the final production runs were carried out on the Cray C90 at the Pittsburgh
Supercomputing Center. The main computational cost is associated with the solution of the

Figure 7. Flowchart summarising the accelerated iteration procedure. This procedure is embedded in an outer loop in
which the value of the control displacement is varied to trace the entire range of the tube’s collapse.
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Figure 8. Displacement history of the nodal points on the material lines z2=p/2 during the accelerated Picard
iteration. The iteration process beings with lubrication theory solves for the fluid equation. This iteration converges
in nine steps (convergence marked by the vertical dotted line). With this initial guess only five Stokes solves are
required to achieve a fully converged solution. The dashed line shows the displacement of the control node (at

z1=7.4). The control displacement is reduced from V0 = −0.8 to V0 = −0.7. L/R0=10, m̄=3.125×10−7.

three-dimensional Stokes equations. The matrix-free evaluations of the matrix vector products
required in the conjugate gradient iterations were carried out using sum factorisation tech-
niques [26]. The procedure was optimised for the Cray vector architecture by precalculating the
relevant quantities in Equations (20) and (21) at the integration points and using a special node
numbering scheme that enhanced vectorisation. The Stokes solver alone achieved a peak
performance of about 350 MFlop s−1. The coupled solver typically executed at around 300
MFlop s−1. About 4–5 h of CPU time were required to trace an entire post-buckling
deformation (from strong collapse with near opposite-wall-contact to the unbuckled axisym-
metric tube). The convergence histories shown in Figures 8 and 10 are fairly characteristic for
the scheme’s behaviour in a wide range of parameters.

3. RESULTS

In all computations, h/R0=1/20 and n=0.49 were chosen to approximate the nearly incom-
pressible behaviour of the relatively thick walled (by the standards of shell theory) rubber tubes
typically used in the experiments mentioned above. Figure 11 shows a strongly collapsed tube
subject to an external pressure of pext= −pd=6.38×10−4 and a volume flux which corre-
sponds to m̄=1.875×10−6. The viscous flow through the most strongly collapsed part of the
tube causes a large pressure drop in the fluid. This significantly increases the compressive load
on the downstream end of the tube and forces two small regions on the side of the tube to
buckle inwards as well. Figure 12 shows the flow through three cross sections in the most
strongly collapsed part of this tube. The contours indicate the magnitude of the axial velocity
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component and show that the flow is already beginning to split up into the two channels that
will remain open when the opposite walls touch. The vectors represent the transverse velocity
components and show the transverse flow changing its direction while passing through the
point of strongest collapse. Further results, extensive parameter studies of the flow character-
istics of the collapsible tube and a comparison with experimental results can be found in
Reference [25].

Finally, the bifurcation diagram shown in Figure 13 illustrates the snap-through behaviour
of the system as the control pressure, pd, is varied. The diagram shows the radial displacement
of two material points on the tube wall (at z1=7.4 and z2=0, p/2, respectively) versus the
control pressure when the volume flux is held at a constant value (m̄=1.875×10−6). For large
positive values of the control pressure pd (negative values of the external pressure, pext), the
tube is completely inflated and it deforms axisymmetrically. Hence, both material points have
the same radial displacements. As the control pressure is reduced (the chamber pressure
increased), the transmural pressure at the tube’s downstream end is reduced and becomes
compressive. When this compressive transmural pressure exceeds a critical value, the axisym-
metric deformation becomes unstable and the tube buckles; one of the material points
collapses towards the tube’s centreline (negative radial displacement) while the other one is
displaced radially outward (positive radial displacement). The diagram shows that the buckling
process is indeed subcritical: the loss of stability is accompanied by a sudden large change in
the displacement field.

In a narrow range of control pressures, two solutions (one stable, the other one unstable)
exist simultaneously. This raises the question, are the solutions obtained in the present
computations, in which the value of the control displacement is prescribed, unique? In other
words, for a given volume flux, could there be multiple tube shapes with the same value of the

Figure 9. Displacement of the material lines z2=0 (bulging out) and z2=p/2 (collapsing) during the Picard iteration.
The dashed line shows the initial guess, the solid line is the equilibrium shape and the dotted lines represent the
intermediate tube shapes during the iteration. The iteration fails to converge in spite of the good initial guess. The
control displacement (at z1=16.4 and z2=p/2) is reduced from V0 = −0.7 to V0 = −0.6. L/R0=20, m̄=6.25×10−8.
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Figure 10. Displacement history of the nodal points on the material line z2=p/2 during the accelerated Picard
iteration (solid and dash-dotted lines). The dashed line shows the displacement of the control node (at z1=16.4). The
extrapolation procedure stabilises the iteration procedure and achieves convergence with the lubrication theory solver
after 10 iterations. Five iterations with the Stokes solver suffice to achieve a fully converged solution. The control

displacement is reduced from V0 = −0.7 to V0 = −0.6. L/R0=20, m̄=6.25×10−8.

control displacement? Numerical experiments suggest that this is not the case: the same
solutions were obtained for different initial guesses (obtained by varying the magnitude of the
pressure disturbance, pcos when generating the initial guess for the tube shape) and if different
step sizes were used in the incrementation of the control displacement.

It should be noted that the linear stability analysis in Reference [14] shows that buckling
modes with a higher number of circumferential waves exist. These represent further solutions

Figure 11. Strongly collapsed tube subject to pext=6.38×10−4. L/R0=10, m̄=1.875×10−6.
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Figure 12. Flow through the strongly collapsed tube shown in the previous figure. Only one quarter of each cross
section is shown. The contours indicate the magnitude of the axial velocity, the arrows represent the transverse velocity

components. The cross sections are located at z=7.25, 7.75 and 8.25. L/R0=10, m̄=1.875×10−6.

and in this sense the solutions obtained here are not unique. However, according to the linear
stability analysis the tube shapes with two circumferential waves are the only physically
realisable ones since they have the lowest buckling pressure.

4. CONCLUSION

This paper has described the development of a fast and robust solver for a three-dimensional
large-displacement fluid-structure interaction problem. The basic iterative approach (simple
switching between fluid and solid solver) was accelerated by an extrapolation procedure based
on the scheme’s asymptotic convergence behaviour. A displacement control technique which
was primarily implemented to overcome the convergence problems caused by the strong
non-linearities of the shell equations also proved necessary to stabilise the iteration procedure
itself.

The further development of the scheme will have to address the following three areas: (i)
extension to finite Reynolds number, (ii) incorporation of the wall contact problem, and (iii)
development of a stable time integration scheme for the unsteady problem based on the
segregated approach. The extension to finite Reynolds number will be the most straightfor-
ward modification, even though the solution of the non-linear Navier–Stokes equations will
require a substantially larger amount of CPU time. It will be interesting to investigate how the
additional non-linearity in the fluid equations will affect the convergence behaviour of the
overall scheme. The incorporation of the wall contact problem is mainly a meshing problem
since the topology of the fluid domain changes when opposite wall contact occurs. Finally, the
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Figure 13. Bifurcation diagram, showing the tube deformation under constant volume flux (m̄=1.875×10−6). The
radial deformation of two material points on the tube wall (at z1=7.4 and z2=0, p/2) is plotted as a function of the
control pressure, pd. The dashed line represents the axisymmetric prebuckling deformation, the solid line represents the

postbuckling solution.

development of a segregated time-dependent solver will be necessary to examine the large-dis-
placement self-excited oscillations frequently observed in the experiments. A previous investi-
gation of this problem in a two-dimensional geometry [13] revealed potential stability problems
in the segregated time integration, indicating that further studies will be required before a
three-dimensional version can be developed.
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APPENDIX A. THE STRAIN AND BENDING TENSORS

The strain and bending tensors which describe the deformation of the shell in the variational
principle (4) are obtained from the tangential base vectors to the deformed shell’s midplane,
Aa=R,a

0 . With the deformed midplane metric tensor Aab=Aa ·Ab, the strain tensor is given by

gab=1/2(Aab−dab),
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since the undeformed midplane metric is orthogonal (the undeformed midplane metric tensor
is aab=dab). With the normal vector to the deformed shell, N=A1×A2/�A1×A2�, the
non-dimensional curvature tensor of the deformed midplane is Bab=N ·Aa,b. The non-dimen-
sional bending tensor is given by

kab= − (Bab−bab),

where the only non-zero entry in the undeformed curvature tensor bab is b22= −1.
Many authors derived approximate shell theories in which different approximations to these

exact strain and bending tensors were used. However, it was shown in Reference [16], that the
full non-linear expressions have to be retained to obtain accurate results in the large-displace-
ment regime.

APPENDIX B. THE UZAWA METHOD

The solution of the discretised Stokes equations is based on the pressure Equation (22) which
is solved with a conjugate gradient iteration, preconditioned by the pressure–mass matrix. The
products of the pressure vector p with the matrix G=�i=1

3 Di Ai Di
T, which are required

during this iteration, are evaluated by an inner iteration since the formation of the matrix G
is computationally very expensive. The inner iteration evaluates Gp by first computing the
three auxiliary vectors yi=Di

Tp, which are then used as the right-hand sides in Aizi=yi. These
equations are solved with conjugate gradient iterations, preconditioned by the diagonals of the
Ai. Finally, the required result is obtained from Gp=�i=1

3 Dizi.
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